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Diverse non-invasive neuroimaging modalities have been developed in the past. However, none of these 

offers the level of spatio-temporal resolution that can be achieved via invasive electrophysiological re-

cordings in animals. These are capable of monitoring in real time the spiking activity of neuronal popu-

lations (multiunit activity, MUA) at the single-cell/population level. In project No. 119-10, we explored 

the possibility of estimating spiking activity from non-invasive scalp EEG measurements [1, 2] of the phase 

and amplitudes of local-field potentials (LFP). The latter have been reported to correlate with the spiking 

activity of neuronal populations [3]. 
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Delta-Phase correlation with 
spiking activity is layer-depend-
ent 

Whittingstall and Logothetis [3] 

have shown that MUA in the pri-

mary visual cortex of monkeys can 

be predicted from increases in the 

power of the gamma-band activity 

that is recorded at the scalp surface 

(viz., in EEG) during the negative 

phase of the delta-band oscillations. 

A correlation between the phase of 

slow oscillations in the delta/theta 

band has been observed also in di-

verse structures in animals [4] and 

humans [5]. However, we discov-

ered a clear counter-example to this 

rule (Figure 1) in an in-vitro model 

[6] of the slow wave oscillations 

(SWO) that are dominant during  

slow-wave sleep. In this model, correlations between the delta-

phase/gamma power and MUA-activity of the visual cortex sys-

tematically depend upon the cortical layer in which the measure-

ments are recorded. 

 

 

Figure 1: Extracellular in-vitro recordings of LFP in the ferret visual cortex  

(10KHz) indicate that local MUA cannot be correctly predicted merely from the 

increases in the gamma-band power that occur during the negative phase of the 

delta band. Raw traces of the LFP that are recorded at supragranular (upper four: 

blue) and the infragranular (lower four: black) layers manifest reversed polarity 

during the SWO events. MUA (rows 2 and 6) and gamma-band (35-80Hz) oscilla-

tions (rows 4 and 8) are heightened in both, the infra and the supragranular layers 

during SWO. However, for the supragranular contacts, MUA and gamma-band 

oscillations are enhanced during the positive phase of the delta oscillations (see 

boxed areas which are indicated with arrows). The negative phase of delta oscil-

lations (red) overlays the delta-band (0-4Hz) filtered LFP (rows 3 and 7). 

 
Consequently, the sign of the phase of delta oscillations does not 

afford unequivocal information appertaining to the spiking activity 

of neural populations. It cannot be therefore used to rigorously con-

straint the mathematical problem as to lead to unique non-invasive 

estimates of MUA. 
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 Quasistatic ohmic models fail to adequately 
describe the propagation of SWO in cortical 
tissue 

Models underlying the non-invasive estimation of 

neural activity from scalp EEG rely on the validity 

of the quasistatic ohmic approximation (QSOA) of 

Maxwell equations. According to this approxima-

tion, which is extensively applied in clinical and ex-

perimental neuroscience, and which is used as the 

basis for the model underlying our non-invasive 

LFP estimates [1], the electric field should travel in-

stantaneously from the sources to the sensors.  

In the light of this evidence, we were forced to de-

velop a new model to estimate the LFP from scalp-

recorded EEG. Interestingly, we were able to show 

that the irrotational source model from ELECTRA 

holds true after dropping the quasistatic approxima-

tion [8]. Moreover, a new non-quasistatic estimate 

of the current source density (CSD) was developed. 

The experimental validation of these models is cur-

rently underway. 

 
  

Figure 2: Propagation delays of the SWO between 

contacts that are synaptically disconnected (SD: 

black bars) and synaptically connected (SC: white 

bars). Results reflect average values for 30 experi-

ments. SWOs were evoked by local releases of glu-

tamate at infra (IG) and supragranular (SG) con-

tacts. Delays were defined as the time taken by the 

SWO to travel to nearby contacts (distances less 

than 1mm) in the recording grid. A cut was made on 

the slice to investigate propagation delays in the ab-

sence of synaptic connections, where propagation 

of the SWO is expected to reflect the propagation 

speed of the electric field. Mean propagation delays 

between SD-contacts were in the order of 70ms, 

which corresponds to a propagation speed of about 

17mm/s. 

 
Motivated by recent experimental results demon-

strating that the propagation speed of epileptiform 

activity within hippocampal tissue [7] is far too low 

(~0.1m/s) to justify quasistatics, we critically re-ex-

amined this assumption. To do so, we studied the 

propagation speeds of SWOs in slices of the ferret 

visual cortex after isolating the synaptic from the 

electromagnetic transmission. Contrary to the 

damped, undistorted instantaneous propagation of 

slow waves, we observed substantial propagation 

delays that are incompatible with current modelling 

assumptions (Figure 2). 
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Relevance for 3R 

An accurate estimation of the spiking activity of 

neural populations from non-invasive scalp-based 

measurements of the electric activity of the brain 

(EEG) might substantially reduce the use of neural 

implants and the dangers that are associated with 

brain surgery in animals and more particularly in 

primates.  Further developments in non-invasive 

approaches are expected in the long-term to replace 

invasive chronic LFP-recordings in animals which 

is in line with 3R-philosophy.  
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